A team of scientists led by Nanyang Technological University, Singapore (NTU Singapore) has found that an existing cancer drug could be repurposed to target a subset of cancers that currently lack targeted treatment options and is often associated with poor outcomes.
This subset of cancers makes up 15 per cent of all cancers and is especially prevalent in aggressive tumours such as osteosarcoma (bone tumour) and glioblastoma (brain tumour).
These cancerous cells ‘stay immortal’ using a mechanism called the alternative lengthening of telomeres (ALT), but the team has demonstrated that ponatinib, a cancer drug approved by the US Food and Drug Administration, blocks key steps in the ALT mechanism that leads it to fail.
Reporting their findings based on laboratory experiments and preclinical animal studies, the scientists found that ponatinib helped to shrink bone tumours (a type of ALT cancer) without causing weight loss, a common side effect associated with cancer drugs.
In mice with tumours treated with ponatinib, they found a reduction in a biomarker for ALT cancer as compared to untreated mice.
The findings are published in the scientific journal Nature Communications.
The researchers say that the findings move them a step closer to developing a targeted therapeutic option for ALT cancers, which lack clinically approved targeted treatments to date.
Dr Maya Jeitany and a team of researchers from the NTU School of Biological Sciences, together with collaborators from the Cancer Science Institute of Singapore and the Yong Loo Lin School of Medicine, both at the National University of Singapore (NUS), and the Genome Institute of Singapore at the Agency for Science, Technology and Research (A*STAR), are seeking to address this unmet need.
Dr Jeitany, study lead and senior research fellow at NTU’s School of Biological Sciences, said: “A prominent feature of cancer is its ability to evade cell death and acquire indefinite replication – to stay immortal, in other words – which it can do through the alternative lengthening of telomeres (ALT) mechanism. While a sizeable portion of cancer cells depend on this mechanism, there is no clinically approved targeted therapy available.
“Through our study, we identified a novel signalling pathway in the ALT mechanism and showed that the FDA-approved drug ponatinib inhibits this pathway and holds exceptional promise in stopping the growth of ALT cancer cells. Our findings may provide a new direction for the treatment of ALT cancers by repurposing an FDA-approved drug for these types of tumours.”
Commenting as an independent expert, Assistant Professor Valerie Yang, medical oncologist with the Department of Lymphoma and Sarcoma at the National Cancer Centre Singapore, said: “Sarcomas and glioblastomas are both highly complex cancers that are more prevalent in young people and currently have limited treatment options. The identification of a drug that is FDA-approved which can be repurposed to target ALT, an Achilles heel in these cancers, is very exciting.”
The study aligns with NTU 2025, the University’s five-year strategic plan, which aims to address humanity’s grand challenges by responding to the needs and challenges of healthy living.
Source: Nanyang Technological University
The World Cancer Declaration recognises that to make major reductions in premature deaths, innovative education and training opportunities for healthcare workers in all disciplines of cancer control need to improve significantly.
ecancer plays a critical part in improving access to education for medical professionals.
Every day we help doctors, nurses, patients and their advocates to further their knowledge and improve the quality of care. Please make a donation to support our ongoing work.
Thank you for your support.