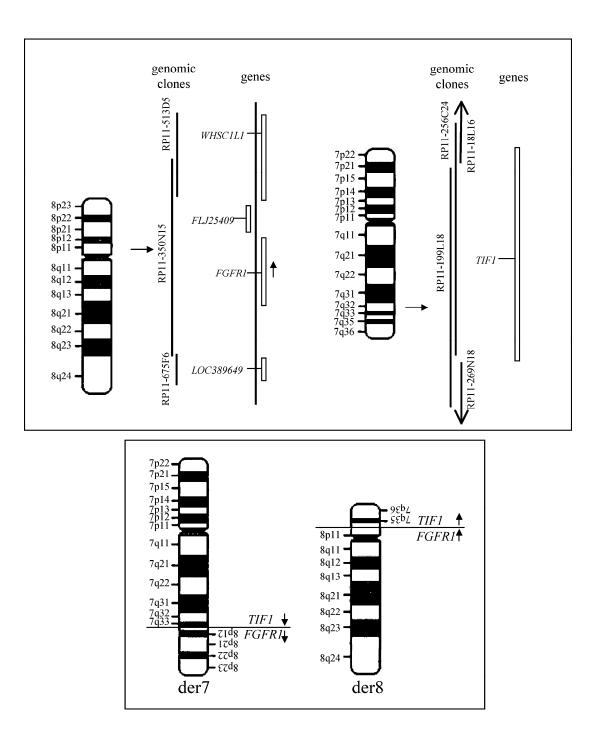
Chromosomal rearrangements in acute myeloid leukemia (AML)

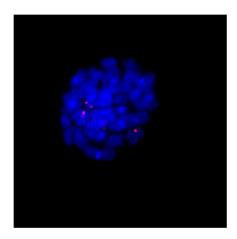
E Belloni^{1,2}, M Trubia^{1,2}, P Gasparini^{1,2}, C Micucci^{1,2}, C Tapinassi^{1,2}, S Confalonieri^{1,2}, P Nuciforo^{1,2}, B Martino³, F Lo-Coco⁴, PP Di Fiore^{1,2,5} and PG Pelicci^{1,2,5}

¹Istituto Europeo di Oncologia, Milan, Italy
²Campus IFOM-IEO, Milan, Italy
³Divisione di Ematologia, Azienda Ospedaliera Bianchi-Malacrino-Morelli, Reggio Calabria, Italy
⁴Università di Roma Tor Vergata, Department of Biopatologia e Diagnostica per Immagini, Rome, Italy
⁵Dipartimento di Medicina, Chirurgia ed Odontoiatria, Universita' degli Studi di Milano, Milan, Italy

Published: 30/09/2010

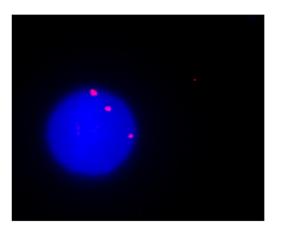

Received: 15/04/2010

ecancer 2010, 4:183 DOI: 10.3332/ecancer.2010.183


Copyright: © the authors; licensee ecancermedicalscience. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<u>http://creativecommons.org/licenses/by/2.0</u>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing Interests: The authors have declared that no competing interests exist.

Correspondence to E Belloni. Email: elena.belloni@ifom-ieo-campus.it



www.ecancermedicalscience.com

Chromosomal rearrangements in acute myeloid leukaemia (AML) frequently give rise to aberrant fusion proteins, responsible for the disease onset (50% of all reported cases). Five per cent of such cases harbour rare rearrangements, mostly translocations, resulting either in new rare fusion products or in the deregulation/truncation of specific genes. In this specific case, a new rearrangement between chromosomes 7 and 8 gives rise to a new abnormal fusion product between the *FGFR1* and *TIF1* genes.

Fluorescence *in situ* hybridization (FISH) can be used to evidence the presence of such a rearrangement, by selecting

genomic clones mapping in the chromosomal region that contains the breakpoint. The presence of the rearrangement can be detected in both interphase and metaphase nuclei. In the shown image, the clone 350N11, spanning the FGFR1 locus, has been labelled in red and used to hybridize interphase and metaphase nuclei (stained with DAPI, blue) on bone marrow cells derived from the patient. The presence of three signals indicates the clone is recognizing the normal chromosome 8, as well as the two derivative chromosomes 7 and 8, proving the presence of the breakpoint within this gene.