Vinita Takiar’s lab in UC’s Department of Radiation Oncology studies how to improve radiation therapy for head and neck cancer patients.
Julianna Korns, a doctoral student working in Takiar’s lab, and her colleagues study an enzyme called Plk1 that allows healthy cells to divide and function normally.
When overexpressed in head and neck cancer cells, it causes the cells to divide abnormally and at a faster rate, leading to the accumulation of more cancer cells.
Using data from The Cancer Genome Atlas database, the research team found Plk1 overexpression was correlated with worse survival outcomes in head and neck cancer patients.
Studying cell lines in the lab, they found blocking Plk1 reduces head and neck cancer cell growth.
Interestingly, Korns noted that Plk1 inhibition reduces cell growth in head and neck cancer cells that are positive and negative for HPV, but HPV-negative cells are more sensitive to this treatment than HPV-positive cells.
“Typically, HPV-negative head and neck cancer patients are more resistant to therapy, so this novel finding could provide benefit to HPV-negative head and neck cancer patients in the clinic,” Korns said. “Our study indicates a potential marker for treatment outcomes. Understanding the role of Plk1 is pivotal to optimising treatment regimens for these patients.”
Korns said the team plans to translate its preclinical findings into clinical settings, targeting Plk1.
“Our findings may provide a novel target for head and neck cancer therapy in combination with radiation, implementing the bench to bedside mentality to improve patient outcomes and reduce toxicities related to current treatments,” she said.
Source: University of Cincinnati