Researchers at Osaka University have developed a computer method that uses magnetic resonance imaging (MRI) and machine learning to rapidly forecast genetic mutations in glioma tumours, which occur in the brain or spine.
The work may help glioma patients to receive more suitable treatment faster, giving better outcomes.
The research was recently published in Scientific Reports.
Cancer treatment has undergone a revolution in recent years.
Spurred by recognition that each cancer case is unique, the specific genetic mutations tumour cells carry are now sequenced to discover which chemotherapy drugs will work best.
However, certain types of cancer, especially brain tumours, are less accessible for genetic testing.
The tumour's genotype can't be found until a sample is taken during surgery, and this can significantly delay treatment.
Glioma is a type of cancer that originates in the brain's supporting cells.
Two types of mutations are especially important; these are changes in the gene for the enzyme isocitrate dehydrogenase (IDH) or the promoter region of telomerase (TERT).
Identifying these mutations can help direct the proper course of treatment.
The researchers produced a machine-learning algorithm that can predict which mutations are present using only the MR images of the tumours.
"Machine learning is increasingly used to diagnose medical images. But our work is one of the first to even attempt to classify something as hidden as the genotype based on image data alone," study first author Ryohei Fukuma explains.
The algorithm was found to be significantly better at predicting the mutations compared with conventionally used radiomic features of the MR images, such as size, shape, and intensity.
To construct the algorithm, the researchers used a convolutional neural network to extract features from the MR images.
Then, using a machine-learning method called support vector machines, they classified the patients into groups based on the presence or absence of mutations. "We hope to expand this approach to other types of cancer, so we can take advantage of the large cancer gene databases already collected" senior author Haruhiko Kishima says.
The end result could remove the need for surgical tissue sampling. Even more, it could lead to better clinical outcomes for patients as the process of delivering personalised medicine becomes easier and faster.
Source and image: Osaka University
We are an independent charity and are not backed by a large company or society. We raise every penny ourselves to improve the standards of cancer care through education. You can help us continue our work to address inequalities in cancer care by making a donation.
Any donation, however small, contributes directly towards the costs of creating and sharing free oncology education.
Together we can get better outcomes for patients by tackling global inequalities in access to the results of cancer research.
Thank you for your support.